Normalising the CaptureC data without a pipeline ! Instructions by Jelena - 291015

Make a directory

mkdir normalisation

Go to the directory

cd normalisation

Copy all your to-be-normalised files to that folder

Let's assume you have 2 tissue types "Pri" (primary cells) and "E" (erythroid cells). You have 1 replicate (Pri1) for Pri, and 2 replicates (E1,E2) for E cells. You are interested in two of your oligos - HbaCombined and Hbax

These are the files you want :

Pri1_CC3/Combined_reads_REdig_CC2_HbaCombined.gff Pri1_CC3/Combined_reads_REdig_CC2_Hbax.gff E1_CC3/Combined_reads_REdig_CC2_HbaCombined.gff E1_CC3/Combined_reads_REdig_CC2_Hbax.gff E2_CC3/Combined_reads_REdig_CC2_HbaCombined.gff E2_CC3/Combined_reads_REdig_CC2_Hbax.gff

These are the copy commands you want to do - note how the ES1 and ES2 file names are changed to avoid OVERWRITING files (we are copying files with same names!)

```
cp /hts/data1/user/Pri1_CC3/Combined_reads_REdig_CC2_HbaCombined.gff Pri1_HbaCombined.gff
cp /hts/data1/user/Pri1_CC3/Combined_reads_REdig_CC2_Hbax.gff Pri1_Hbax.gff
cp /hts/data1/user/E1_CC3/Combined_reads_REdig_CC2_HbaCombined.gff E1_HbaCombined.gff
cp /hts/data1/user/E1_CC3/Combined_reads_REdig_CC2_Hbax.gff E1_Hbax.gff
cp /hts/data1/user/E2_CC3/Combined_reads_REdig_CC2_Hbax.gff E2_HbaCombined.gff
cp /hts/data1/user/E2_CC3/Combined_reads_REdig_CC2_Hbax.gff E2_Hbax.gff
```

Now we can list what we have : Is

We see we have the 6 gff files :

Pril_HbaCombined.gff
Pril_Hbax.gff
E1_HbaCombined.gff
E1_Hbax.gff
E2_HbaCombined.gff
E2_Hbax.gff

Now we will run the first parts of the normalisation with a script I wrote :

/tl-data/data/hugheslab/jelenatools/CC/norm/VS100/run.sh &> normalisation.log

The above command normalises the data for 100 000 reads, using James' codes.

Now you should have file

ls | grep gfc

normalised.gfc.out

Check that you got no error messages in

cat normalisation.log

The subsequent steps depend on the ordering of columns in the file - so we prepare our data for those steps manually !

Generating the mean for replicates !

We have 7 columns in the file normalised.gfc.out

chr:start-stop NAME1 NAME2 NAME3 NAME4 NAME5 NAME6

We want to take the "correct columns" out - the ones which are the replicates of each others ! # We use cut command to take out the columns we are interested in.

If our file heading looks like this :

chr:start-stop Prim_Hbx Prim_Hba ES1_Hbx ES1_Hba ES2_Hbx ES2_Hba

We can write the example commands below :

Example command for taking out ES1 and ES2 Hba columns : cut -f 1,2,4 normalised.gfc.out > ES1_ES2_Hba_forMean.in # The above takes out the chr:start-stop and ES1_Hba and ES2_Hba columns.

Example command for taking out ES1 and ES2 Hbx columns :
cut -f 1,3,5 normalised.gfc.out > ES1_ES2_Hbx_forMean.in

Check your column numbers - they are not necessarily the same as above :

Check with head commands that you got the right columns : head *forMean*

The file names have to end _forMean.in - that is how the subsequent script knows which files to average !

Now we will run the averaging for these files :

/tl-data/data/hugheslab/jelenatools/CC/norm/VS100/mean.sh &> mean.log

Now you should have files which end _mean.gfc , for example :

ls | grep gfc

ES12_Hbx_mean.gfc ES12_Hba_mean.gfc

Check that you got no error messages in cat mean.log

Now we can make the substraction of the tracks !

We already have correct file format for the ES

Now we need to take the columns out for the Prim - just like we did for the ES above.# Now we don't have replicates, so taking out 2 columns is enough :

If our file heading looks like this :

chr:start-stop Prim_Hbx Prim_Hba ES1_Hbx ES1_Hba ES2_Hbx ES2_Hba

We can write the example commands below :

Example command for taking out Prim Hba : cut -f 1,6 normalised.gfc.out > Prim_Hba.gfc # The above takes out the chr:start-stop and Prim_Hba columns.

Example command for taking out Prim Hbx : cut -f 1,7 normalised.gfc.out > Prim_Hbx.gfc

Check your column numbers - they are not necessarily the same as above !

Check with head commands that you got the right columns : ${}^{\mbox{head Prim}*gfc}$

Now you should have files :

ls | grep gfc

ES1_ES2_Hbx_mean.gfc ES1_ES2_Hba_mean.gfc Prim_Hbx.gfc Prim_Hba.gfc

Now we need to put the "pairs" of SAMPLE-INPUT to a same file like this :

paste Prim_Hbx.gfc ES1_ES2_Hbx_mean.gfc > Hbx_Prim_ES12_forSubtract.in
paste Prim_Hba.gfc ES1_ES2_Hba_mean.gfc > Hba_Prim_ES12_forSubtract.in

The file name has to end _forSubtract.in - that is how the script below recognizes the files it should do subtraction to.

We will now do the substraction like this :

/tl-data/data/hugheslab/jelenatools/CC/norm/VS100/subtract.sh &> subtract.log

Check that you got no error messages in
 cat subtract.log

Now we should have files :

ls | grep gfc

Hbx_subtracted.gfc Hba_subtracted.gfc

Prim_Hba.gfc Prim_Hbx.gfc

ES1_ES2_Hbx<mark>_mean.gfc</mark> ES1_ES2_Hba<mark>_mean.gfc</mark>

The last step is to make the visualisation files for all our data !

We should have files :

ls | grep gfc

Hbx_subtracted.gfc Hba_subtracted.gfc

Pri_Hba.gfc Pri_Hbx.gfc

ES12_Hbx_mean.gfc ES12_Hba_mean.gfc

We need to generate data hub for these tracks - to see them in USCS !

/t1-data/data/hugheslab/jelenatools/CC/norm/VS100/hub.sh --genome mm9 --hubname testhub050815 --pf /public/telenius/testhub050815 &> hubbing.log

Check that you didn't get any error messages :

cat hubbing.log

The hub address is given in the end of the log file :

tail hubbing.log